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Abstract—The evaluation of stress intensity factors is important for the assessment of structural
integrity of flawed structures. The boundary element method is used in the present work for the
computation of steady-state and time-dependent stress intensity factors of cracks in thermally
loaded structures. While many boundary and volume integral based formulations are available for
the treatment of thermoelastic problems in solids. the present analysis is based on a recently
developed boundary-only formulation. Crack-tip clements that accurately model the behavior of
displacement, temperature fields and singularity of traction, flux fields are used for the accurate
evaluation of stress intensity tactors.

[. INTRODUCTION

The knowledge of stress intensity factors (SIFs) in thermally stressed structures is very
important for the assessment of structural integrity since temperature induced stresses may
lead to damage of flawed structural components. The stress intensity factors have been
generally obtained analytically for simple structures under steady-state conditions and
experimentally and numerically for arbitrary structures under steady-state and time-
dependent thermal loading. For example, Emery ef al. (1977) have used the finite clement
method (FEM) with singularity programming and quarter point crack clements to compute
stress intensity factors for edge cracks. Stress intensity factors for center cracks under a steady-
state temperature field were calculated by Sumi and Katayama (1980) using a complex
variable method together with analytic continuation and modificd mapping-collocation
techniques. The stress intensity factors for cracks in planar structures under time-dependent
thermal loading have been computed by Hellen er ¢f. (1982) using FEM together with
quarter point crack elements, J integral and virtual crack extension techniques and by
Emmel and Staumm (1985) using FEM with quarter point clements.

The present paper is concerned with the application of a thermoelastic boundary
element method for the evaluation of the steady-state und time-dependent stress intensity
factors of cracks in finite structures. The BEM has been used extensively for the computation
of stress intensity factors since the method is inherently well suited to solve problems of
high stress concentration. While the method has been applied previously for the solution
of crack problems without body forces, the extension of the method for body force problems
is rather limited. For example, stress intensity fuctors of cracks in rotating solids have been
computed recently using a boundary-only integral formulation by Raveendra and Bancerjee
(1991). As for thermal problems, Tanaka er al. (1984) have used an cxtended boundary
integral equation involving a volume integral of the temperature ficld for the solution of
steady- and non-steady-state problems, including fracture mechanics problems. The usc of
volume discretization for such problems eliminates most of the desirable features of the
boundary element method. Further, the displacement and traction variables within each
discretized boundary element were not modeled by the higher order interpolation functions
that are essential for the accurate computation of stress intensity factors. An alternative
boundary integral equation, inappropriately involving displacement and traction rates, was
used by Sladek and Sladek (1984) in their thermoclastic analysis. Finally. the boundary
integral formulation for steady-state thermoclasticity developed by Rizzo and Shippy (1977)
and Cruse et al. (1977), based on converting the volume integral involving the temperature
field to equivalent surface integrals, was used by Lee and Cho (1990) to compute the thermal
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stress intensity fuctors of cusp cracks. As indicated. the above work is confined to steady-
state analysis and only symmetric cracks were considered.

A complete boundary element solution procedure for time-dependent thermoelastic
problems. based on integral equations expressed over the surface of the body. was recently
developed by Dargush and Banerjee (1989, 1990). In this paper. the method developed by
Dargush and Banerjee (1989) for the solution of two-dimensional thermoelastic problems
1s extended for the solution of thermoelastic fracture mechanics problems. [t is well known
that when the flow of heat 1s disturbed by the presence of cracks there develops a dis-
continuity of heat flux and traction at the crack tips. The accurate evaluation of stress
intensity factors depends on how well the temperature and displacement (also tlux and
traction) fields are approximated in the vicinity of the crack-tips. The strength of singularity
in thermoelastic problems is identical to the singulanty strength in elastic problems without
body forces and therefore. special crack-tip elements that accurately depict the near crack-
tip behavior are incorporated into the present analysis. A comparable analysis based on
boundary-only integral equations for thermoclasticity together with crack-tip elements that
accurately model the temperature, flux and displacement, traction fields near the crack-tip.
as used in the present paper. is not currently available in the literature.

2. BEM FORMULATION FOR THERMOELASTICITY

Time-dependent thermoelasticity
The ditferentiad equations that govern the quasistatic behavior of a thermoclastic solid,
in the absence of internal sources, can be written as

(XLt )
o 0 () - v =0, (A, (. D+, (x )= 34+ 2020, =0, (la.b)

Ot

where w, is the displacement vector, 0 s the temperature ficld, 4, g are Lame’s isothermal
clastic constants, x is the cocllicient of thermal expansion, ¢, is the thermal diffusivity and
fis time. For the two-dimensional problem considered in this text, the tndices take the
values 1, 2. Using the fundamental temperature, displacement solutions due to a unit pulse
heat source and a unit point force in an infinite medium and their derivatives, a set of
boundary integral equations can be derived (Dargush and Banerjee, 1989):

(S = J [G(x, E .ty wqlx, )= f(x. &5 0, T) % O(x, )] dS(x), (22)
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C (i = J (G () = F (e D, ) + g, S t) * gl 1)
—fx, Ei )y x 0(x, D] dS(x),  (2b)

where ¢, is the traction vector, ¢ is the flux, ¢ is the time at which the responses are calculated,
tis the time at which the pulse source is applied and C,. ¢ are functions of the local geometry
at &. The fundamental solutions are:

G, (x.&)and F,(x, &) are the displacement and traction solutions due to a unit point
lforce,

gx.&ir 1) and fi(x, &1t 1) arc the displacement and traction solutions due to a unit
pulsc heat source, and

gx. & ety and f{x. &t 1) are the temperature and flux solutions duc to a unit pulse
heat source.

The fundamental solutions, taken from Dargush and Bancrjee (1989). are explicitly given
in the Appendix. Note that in the above equations, = denotes a Riemann convolution
integral. defined by
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asbh= J-l a(t, t)b(r) dr. 3)
0

The solution of thermoelastic problems can be obtained by solving the integral equa-
tions (2a.b). Since both the space and time variables are involved in the equations, dis-
cretization must be introduced in both space and time. Spatially, the variables within each
discretized element are assumed to vary quadratically in terms of the values at the nodes
of the element and these variables are assumed to be constant during each equally divided
time step. Assuming that the time duration is divided into N equal increments of magnitude
At, the convolution integrals are converted into a series of N terms. That is. the integral
equations become

(B0 = Z i [0g(x. € : Dg(x, )= f (x, &5 1)0(x. )] dS(x), (4a)
n=|

C,(S (.0 = L [Gi(x. & (e ) = F (e, ) (x, )] AS(x)
N
+ Y | [09.(x, & 0q(x, )= 0f(x, & 0)0(x, )] ds(x), (4b)
n= | JY

where

nAt

og(x,Ci) = J g(x, &t 1) dr, ctc.

(n - 1)

Since the fundamental solutions are explicitly known the temporal integration can be
performed analytically. On the other hand, the spatial integration over discretized elements
requires numerical procedures. By considering the singularity of various fundamental solu-
tions these integrals are evaluated using a self-adaptive integration algorithm (Banerjec et
al., 1986).

The boundary element solutions require the usual collocation procedure. That is, by
evaluating the integral equations at all boundary nodes, we arrive at a sct of equations of
the form

; (A" " Hq"} — A/ -){0"}) = {0}, (5a)
AGI{r} - [AF{u"} + Z. (Ag** ' "1{g"} = [A/** ") {0r}) = {0}, (5b)

where [AG]. [AF]. [Ag), [Af]. [AG] and [Af] are matrices of integrated kernel functions, {u},
{t}, {0}. {q} are vectors of nodal quantities (i.c. displacement, traction, temperature, flux)
and the superscript refers to the time step index. Equation (5a) can be further rearranged
by separating thc nodal variables for the time step N as

(84'){q"} - (87'1{6"} = — z (18" '~ 1{q"} ~ [AT** =} {0r}). (50)

By imposing the given boundary condition, eqns (5b, ¢) can be written in terms of the

unknown {x}, {X'} and the known {y}, { ¥} nodal values and associated matrix coefficients
as

SAS 29:18-G
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a'l{x"} =[6"1{"} - Z (A" "liqy - (A7 e, (6a)
[4){X") = [BI{Y"} - 'zl (Ag™ )i} — (AN o)), (6b)

Note that the matrices [A4], [B] are made up of time-independent kernel coefficients and
matrices [a'], [b'] are obtained from the kernels of the first time step and therefore, these
matrices need to be formed only once during the solution process. The decomposition of
matrices [4] and [a'], obtained from the solution at the first time step, is then used for the
solution of nodal values at subsequent time steps for different right-hand sides. The right-
hand side is made up of known boundary conditions and the accumulated effect of tem-
perature and flux history up to the current time step. which are known at a given time step.

Steady-state thermoelasticity
The thermoelastic boundary element formulation simplifies considerably under steady-
state conditions. The governing differential equations now become

k0,(x) =0, (A+ p)u,, () + e, () — BA+ 2p)20 (x) = (7a.b)

where k is the thermal conductivity. Using the fundamental temperature and displacement
solutions due to time-independent unit load and unit step heat source a set of integral
cquations can be derived (Dargush and Banerjee, 1989):

c($H0(E) = L[.‘i(x. &)q(x) ~F(x. §)0(x)} dS(x). (8a)

CSu(3) = ﬁ[G.,(x.s‘)l,(x)—F.,(x.c')tl,('\‘)] dS(x)+ J [9.(x.$)alx)

—fi(x, §)0(x)] dS(x). (8b)

Since only spatial variables are involved the solution requires only the discretization
of the boundary of the problem domain. A sct of algebraic equations for each set of integral
equation can be obtained through the collocation process and the unknown nodal values
are computed by imposing the boundary condition. The final set of equations can be
expressed as

lixt =10y} (10X = (BILY} - (89} (410}, (9.b)

3. FRACTURE MECHANICS MODELING OF THERMAL PROBLEMS

In the presence of cracks the integral equations, described in the previous section,
cannot be applied directly. Unless the problem geometry and loading are symmetrical with
respect to the crack plane the BEM procedure requires the modeling of co-planar surfaces
of the crack. Since identical equations arc obtained at corresponding nodes of the crack
surfaces, the resulting system matrix becomes ill-conditioned. A simple, but elegant, procedure
which is effective for the solution of non-symmetric crack problems is the multi-region
approach. In this approach, the body is divided into sub-regions along the crack planc and
the integral equations are applied independently for each region. The final solution is
obtained by coupling the equations of both regions through compatibility and continuity
conditions.

Thermoelastic problems, in the absence of cracks, can be solved accurately by inter-
polating the field variables within each discretized element by quadratic shape functions. It
is well known that the disturbance of heat flow by crack surfaces will produce singularity
of temperature and displacement derivative ficlds. Therefore, the accuracy of the solution
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depends considerably on how well the temperature, displacement and flux, traction
fields are approximated in the vicinity of the crack tip. The usually quadratic boundary
elements provide neither the correct \/[—J variation of the crack-tip displacement and tem-
perature fields nor the required singularity of the traction and flux fields. The correct
variation of displacement and temperature fields can be obtained through the use of quarter
point elements (Barsoum, 1976). That is, by placing the mid-nodes of sides emanating from
the crack at geometric quarter points, the variation of displacement and temperature fields
is forced to an asymptotic \/;; behavior as

{“(P)}=A1+A:\/§+A3£;, (10)

where A, are functions of nodal values and / is the element length. Unlike the finite element
method, the derivatives of displacements and temperatures are independently approximated
in the BEM and therefore the use of the quarter point elements will provide the incorrect
variation of traction and flux. The correct singularity of traction and flux fields can be
secured by multiplying the nominal traction and flux fields, obtained from the quarter point
modeling, by a non-dimensional parameter ,/(//p) such that

{’(P)}=f\f(/’) f+3~+3|f (1)

where B, arc functions of nodal values and ¢, is the vector of nominal traction (flux) obtained
from quarter point clement modeling.

Evaluation of stress intensity factors

Thermal stresses can be determined from the theory of clasticity equations with body
forces obtained from solving the pure temperature problem. Therefore, the distribution of
stresses (and strains) near the crack tip in a thermoclastic problem is given by the general
cquations that are applicable in linear clastic fracture mechanics. That is, the near crack tip
stress field a,,, duc to remote loading, may be expressed in terms of the distance from the
crack tip p (Fig. 1):

0
a:' 2
o, = —L +al+al/p+ - (12)
\/p

This crack-tip stress field may also be expressed in terms of a singularity strength

parameter known as a stress intensity factor. These stress intensity factors are defined as
(Kanninen and Popelar, 1985):

Kl} . {”zzlo-o}
=lim /2 R 13
{Ku "'”’" P Galyao (13)

where K; and K|, are the mode I and mode [I stress intensity factors, respectively. Using
the definition of stress intensity factors and eqn (11), the stress intensity factors may be
calculated from nominal tractions at the crack tip as

et - Vo) w

where 7 is the nominal traction at the crack tip. It should be noted that although the
tractions ¢/, at the crack tip are unbounded, the nominal tractions are finite.
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Fig. 1. Definition of crack grometry.

Alternatively, the stress intensity factors may be expressed in terms of crack opening
displacements Au, = tjy. . — wly. . (Kanninen and Popelar, 1985):

{I\‘l } _ H \/27{ {Au;} s
K 8V p law | (15)

where, in terms of Young's modulus £ and Poisson’s ratio v, H = E for the plane stress
case and H = E/(1 —v*) for the plane strain casc.

From past experience, it was found that the crack-tip nominal traction depends very
much on the accuracy of the numerical integration scheme employed for the evaluation
of higher order singular integrals (Raveendra and Banerjee, 1991). Since the crack-tip
displacements are less sensitive to the integration scheme used, the stress intensity factors
in the present analysis are computed from the crack-opening displacements.

4. NUMERICAL EXAMPLES

Effect of crack-tip elements

To assess the accuracy of the solution procedure described in this text, the mode I
stress intensity factors for an edge crack, shown in Fig. 2, were computed under steady-
state thermal conditions. The applied temperature field was

T = Ty(—1+2x/b).

The normalized stress intensity factor {or this situation is obtained analytically by
Hellen et al. (1982) using Green's integral:
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Fig. 2. Geometry of an edge crack in a rectangular plane.
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where K, = EaTo\/I; for plane stress and K, = EaT(,\/h/(l —v) for plance strain. The stress
intensity factor was calculated using regular quadratic elements in once case and quarter
point elements with traction singular modification at crack tips in another case. The crack
geometry used was a/h = 0.1 and h/h = 2. The stress intensity factors obtained from regular
quadratic boundary clements deviated from the analytical solution by about 7%. but the
analytical and boundary element results were within 1% when quarter point clements with
traction singular modification were used at the crack tip. This confirms the need to use
special elements at the crack tip and, therefore, these elements were used in all the subsequent
analyses.

It should be noted that one half of the crack was modeled by three elements in both
cases. [t is possible to improve the accuracy of the results of the first case by using finer
discretization, which increascs the computing effort. However, highly accurate results can
be obtained through the usc of special crack-tip elements even with a relatively coarse mesh.

Steady-state thermal analysis of a center crack
The steady-state stress intensity factors of a center crack in a finite rectangular plate,
shown in Fig. 3, were computed using BEM under plane strain conditions. This problem
was solved previously using the complex variable method together with the modified
collocation technique by Sumi and Katayama (1980) and also by Emmel and Stamm (1985)
using the quarter point finite element method. The thermal boundary conditions used were
T =T, (constant), |x]<a,y=0+; T =T, (constant), [x|=b,]y| <h;

T =T, (constant), |y]=h,|x| < b,

for case A, and for case B,

I'tl = bv I.yl < h;
T = +T,(constant), |x|<b,y= %h.

The mode [ stress intensity factors computed from case A were normalized with respect
to Ky = azE(Tz--T.)\/E/(I -v), and the mode I stress intensity factors computed from
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Fig. 3. Geometry of a center crack in a rectangular plate.
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case B were normalized with respect to K, = aETz\/b/(l —v). The results, shown in Fig. 4,
indicate excellent agreement between the present BEM solutions and results given in the
cited references.

Steady-state thermal analysis of an edge crack

The next steady-state example considered is the problem of an edge crack in a finite
rectangular plate, shown in Fig. 2, solved previously using various finite clement techniques
by Hellen e al. (1982). The thermal boundary condition used were

0T 0T
T = Ty(—~1+2x/b); %-« =0, l¥l=4h 0O0<x<b; e 0, y=0, x<ua
dy dy

The non-dimensional form of the stress intensity factors were obtained by dividing the

Center Crack {hvb=1)
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Fig. 4. Comparison of Mode { and 11 steady-state SIFs for a center crack.
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Fig. 5. Comparison of Mode [ steady-state SIFS for an edge crack.

plane stress solutions by K, = Ea’l],\/b. The finite clement results were computed using the
virtual crack extension (VCE) technique, J integral technique and from a semi-analytical
solution based on Green's integral which was scaled by a factor that depends on the
geometry a/b of the plate. The finite clement results are compared to BEM solutions in Fig.
5. Again the figurc shows good agreement between the solutions.

Steudy-state thermal analysis of radial crack

The final steady-state example considered is the problem of a radial crack in a hollow
cylinder. The geometry of the cylinder is shown in Fig. 6. The crack geometry used was
a =4.0,a/b =0.2and R/R, = 0.8. The steady-state stress intensity factors were computed
under three sets of thermal boundary conditions. The boundary conditions used were

Fig. 6. Geometry of a radial crack in a hollow cylinder.
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Case A: A thermal loading of — T° was applied to the inner surface of the cylinder
and to the crack surface and the outer surface of the cylinder was maintained at 0°.
Case B: The inner surface of the cylinder was cooled to a temperature of — T~ while
the outer surface was maintained at 0°. The crack surfaces were assumed to be insulated.
Case C: The outer surface of the cylinder was heated to a temperature of 77 while the
inner surface of the cylinder and the crack surfaces were keptat 0.

Figure 7 shows that the normalized stress intensity factors were essentially identical
for all three cases and the SIFs increase monotonically with the non-dimensional crack
length parameter. The stress intensity factors were normalized by dividing the boundary
element solutions by K, = ExAT\/f}.-(l —v). where AT is the difference in temperatures
between the inner and outer surfaces.

Time-dependent thermal analysis of center cracks

A limited number of fracture mechanics analysis problems with transient temperature
distribution is available in the literature. One such example is the evaluation of the transient
stress intensity factor of a center crack in a rectangular plate using the finite element
method (Emmel and Stamm, 1985). The thermal loading considered in the present analysis
corresponds to T = T, on the boundary and T = 0 on the crack surface. The finite clement
mode I SIF results, for a crack geometry of a/b = 0.5, /b = 1 {see Fig. 3), are given in
Emmel and Stamm (1985). A comparison of FEM results with the corresponding solutions
of BEM is shown in Fig. 8. The results show that the two numerical solutions are in good
agreement. Further, BEM solutions for crack geometry a/b = 0.1 and a/b = 0.3 arc also
shown in the figure. All the results indicate that the normalized stress intensity factors
increase monotonically to their steady-state valucs. 1t should be noted that the time axis is
non-dimensionalized as ¢,£/h°, where ¢, is the thermal ditfusivity, £is time and b is the plate
width, The value used for diffusivity in the finite clement solutions is not given in the
reference, therefore, a value for ¢, was assumed such that the time values were shifted to
the corresponding BEM values. Note that the values of SIFs shown for the final time step
in this plot and all the subsequent plots are obtained from the steady-state analysis.

Radial Crack in Hollow Cylinder

Steady-State

Normakzed SiF

02 -
ot -
[+] ~— T T T T T T
a1 02 a3 0.4 Q0.5
*t
O case A + caseB © caseC

Fig. 7. Steady-state SIFs for a radial crack.
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Center Crack (h/b=1)
0.5
04 -
53 L= — o —
L 03 A
@
b
N
°
13
2 02 A R
01
o - T T T T T T T T
0.000 0.200 0.400 0.600 0.800 1.000
Normatized time
O Emmel ot ai (1085} +  BEM (sbe0.5)
©  BEM (ab-0.1) A BEM(ab-0.3)

Fig. 8. Comparison of teansicnt SIFs for a center crack.

Time-dependent thermal analysis of edye cracks

The transient stress intensity factors for an edge crack (Fig. 2) were calculated by
Hellen e al. (1982) using the finite clement method. Only one geometry (a/h = 0.3) was
considered in the finite element study. The plate was constrained along the vertical direction
at the top and bottom faces and the left side of the plate was cooled to —27™, while the
opposite side was kept at 0. The FEM results are given for a crack geometry of a/b = 0.3.
The BEM solutions, shown in Fig. 9, agree well with the finite element results. In this
case iulso, the stress intensity factor and time values were non-dimensionalized as in the
previous example. Additionally, boundary element results were obtained for crack geome-
tries of a/b = 0.1 and a/b = 0.5. These results also increase rapidly to their steady-state
values.

Time-dependent thermal analysis of a radial crack in a hollow cylinder

This example, for a specific geometry of u/h = 0.2, was also examined by Hellen et al.
(1982) and Emmcl and Stamm (1985) using the finite clement method. Three thermal
loading cuses, described previously in the steady-state example, were also considered in the
present problem. Figure 10 shows a comparison of boundary element solutions to finite
clement results for the thermal loading given by case A, The stress intensity factors were
normalized as in the stcady-state example and the time values were non-dimensionalized as
c,4/b*. The figure shows that the FEM results and BEM solutions arc in good agreement.
The BEM solutions arc also compared to the FEM resuits for cases B and C in Figs 11 and
12, respectively. Again the FEM and BEM results are in good agreement.

Time-dependent thermal analysis of an inclined crack in a rectangular plate

Finally, a mixed mode crack problem under transient thermal loading was considered.
A crack inclined at an angle of 22.5” to the horizontal, embedded in a rectangular plate,
was selected. The crack geometry used was a/b = 0.2, h/b = |, as shown in Fig. 13. A
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Fig. 10. Comparison of transient SIFs for a radial crack fcase A).
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l
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i
Fig. 13. Geometry of an inclined crack in a rectangular plate.

thermal loading of 07 at the crack surface and T at the outer boundary, applied at time
¢t = 0 and maintained at those values, was considered. The variation of mode I and mode
I stress intensity factors with time is shown in Figs 14 and 135, respectively. The stress
intensity factors and times were non-dimensionalized as in the center crack example. Figure
14 indicates that the mode [ stress intensity factor increases monotonically to the steady-
state value, however, the mode H stress intensity factor increases to a peak after a short
time before it decreases gradually to the steady-state value, as shown in Fig. 15,

Some aspects of modeling
The magnitudc of the time step used in solving the examples in the present work is not
indicated since the results are not very sensitive to the time step size. Dargush and Banerjee

inclined Center Crack
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Fig. 14. Transient mode [ SIFs for an inclined crack.
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Inclined Center Crack
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Fig. 15. Transicnt mode I1 SIFs for an inclined crack.

(1989), in their transient thermoelastic analysis, have estimated the optimum time step from
thermal diffusivity ¢,, and the size of the smallest clement L, as 6t = 0.05L%c,. In the
present work, instead of the element size, the half-length of the crack was used in estimating
the time step. However, the results are insensitive even to the use of time steps that are
several time bigger than the estimated values. This is consistent with a recent observation
of Dargush and Banerjee (1991) in the analysis of transient heat conduction. Generally, the
size of time step only scems to affect the very early responses.

In general, half the crack length was modeled by three boundary elcments. The same
discretization was used on both sides of the crack tip. Quarter point crack-tip elements with
traction singular modification were used at the crack tip. The element sizes, thereafter, were
increased gradually. This discretization pattern was developed during the course of previous
fracture mechanics analyses [e.g. Raveendra and Banerjee (1991)].

5. CONCLUSION

A knowledge of stress intensity factors is important in the evaluation of the structural
integrity of flawed structures. A boundary-only intcgral equation is applied for the first
time for the evaluation of stress intensity factors of planar structures subjected to steady-
state and transient thermal loading. Since the accuracy of the solution depends considerably
on the correct representation of ncar-tip ficlds, special crack-tip elements are used at the
crack-tip. These elements provide the correct variation of displacement, temperature fields
and singularity of traction, flux ficlds. Center cracks, edge cracks and an inclined crack in
a plate and a radial crack in a cylinder are solved using this boundary element procedure.
Most of the BEM solutions are compared to previous results obtained from finite element
and analytical methods to validate the applicability of the BEM procedure. The efficient
and accurate boundary element method used in the present analysis provides an elegant
alternative to other numerical methods for the solution of steady-state and transient thermal
fracture mechanics problems.
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APPENDIX

Time-dependent thermoclasticity
The temperature and displacement fundamental solutions duc to a unit pulse heat source are

gle.$in = el g0 300 = copdnin). (ALY

The displucement fundamental solution due to a unit point load is

G &)y =Cfzz—0,C:inrf, {A3)
where
ey = 1/2nk, ¢y =Pej2A+20, Co =18zt —v), C,=3-dv, 1, =p/r, o=y,
2 N . e
n=x—=5. n= "/'\/CJ‘ hy= S {l—c ") A =E07 8 Edp = ‘:fd-"- hy = hy+h,.
" :

The flux and traction fundamental solutions are obtained from the appropriate derivatives of temperature
and displacement solutions as

Jix.&y = ?:m. hin), fAx 300y = o [25 Oy —n i (m {A4.5)
C,
Y= ——r—[?.:,:,:.n., +Ci(d, s +2m) (A6)
where

cy=key, co=ken Cy= =2uC,. Co=1-2v hy=e" %
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Steady-state thermoelusticity
The fundamental solutions G, and £, are the same as those given by eqns (A3 and 6). The steady-state

solutions §. /. ¢, and f, are obtained from the time-dependent solutions as ¢ approaches infinity. That is, the
steady-state fundamental solutions are

gx.&)= —c,Inr, f(x.,’)=%:kn,‘, (A7,8)

g.(¢ &)= L—;i[r,(l ~2Ilnr)] and f(x.3) = f,—‘[::,:km —n(1-2Inr) (A9.10)



