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Abstract-The evaluation of stress intensity factors is important for the assessment of structural
integrity of flawed structures. The boundary element method is used in the present work for the
computation of steady-state and lime-dependent stress intensity factors of cracks in thermally
loaded structures. While many boundary and volume integral based formulations are available for
the treatment of thermoelastic problems in solids. the present analysis is based on a recently
developed boundary-only formulation. Crack-tip clements that accurately model the behavior of
displacement. temperature fields and singularity of traction. flUK fields are used for the accurate
evaluation of stress mtensity lilctors.

I. INTRODUCTION

The knowledge of stress intensity factors (SIFs) in thermally stressed structures is very
important for the assessment of structural integrity since temperature induced stresses may
lead to damage of nawed structural components. The stress intensity 1;lctors have been
generally obtained analytically for simple structures under steady-state conditions and
experimentally and numerically for arbitrary structures under steady-state and time
dependent thermal loading. For example. Emery cf al. (1977) hOI ve used the finite element
method (FEM) with singularity programming and quarter point crack elements to compute
strt.."Ss intensity f<lctors for edge cracks. Stress intensity factors for center cracks under a steady
state temperature field were caleulated by Sumi and Katayama (llJ80) using a complex
variable method together with analytic eontinuation and modified mapping--eolloeation
techniques. The stress intensity f;u.:tors for cnlcks in planar structures under time-dependent
thermal loading have been computed by Hellen ef al. (1982) using FEM together with
quarter point crack elements. J integral ami virtual crack extension techniques and by
Emmel and Stamm (1985) using FEM with quarter point elements.

The present paper is concerned with the application of a thermoelastic boundary
element method for the evaluation of the steady-stale and time-dependent stress intensity
factors ofcracks in tlnite structures. The BEM has been used extensively for the computation
of stress intensity factors since the method is inherently well suited to solve problems of
high stress concentration. While the method has been applied previously for the solution
ofcrack problems without body forces. the extension of the method for body force problems
is rather limited. For example. stress intensity factors of cracks in rotating solids have been
computed recently using a boundary-only integral formulation by Raveendra and Banerjee
(1991). As for thermal problems. Tanaka £'f al. (1984) have used an extended boundary
integral equation involving a volume integral of the temperature field for the solution of
steady- and non-steady-state problems. including fracture mechanics problems. The use of
volume discretization for such problems eliminates most of the desirable features of the
boundary element method. Further. the displacement and traction variables within each
discretized boundary element were not modeled by the higher order interpolation functions
that are essential for the accurate computation of stress intensity factors. An alternative
boundary integral equation. inappropriately involving displacement and traction rates. was
used by Sladek and Sladek (1984) in their thermoelastic analysis. Finally. the boundary
integral formulation for steady-state thermoelasticity developed by Rizzo and Shippy (1977)
and Cruse ef al. (1977). based on converting the volume integral involving the temperature
field to equivalent surface integrals. was used by Lee and Cho (1990) to compute the thermal
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stress intensity factors of cusp cracks. As indicated. the above work is confined to steady
state analysis and only symmetric cracks were considered.

A complete boundary element solution procedure for time-dependent thermoelastic
problems. based on integral equations expressed over the surface of the body. was recently
developed by Dargush and Banerjee (1989. 1990). In this paper. the method developed by
Dargush and Banerjee (1989) for the solution of two-dimensional thermoelastic problems
is extended for the solution of thermoelastic fracture mechanics problems, It is weU known
that when the flow of heat is disturbed by the presence of cracks there develops a dis
continuity of heat flux and traction at the crack tips. The accurate evaluation of stress
intensity factors depends on how weU the temperature and displacement (also Ilux and
traction) tlelds arc approximated in the vicinity of the crack-tips. The strength of singularity
in thermoelastic problems is identical to the singularity strength in dastic problems without
body forces and therefore. special crack-tip elements that accurately depict the near crack
tip behavior arc incorporated into the present analysis, A comparable analysis based on
boundary-only integral equations for thermoclasticity together with crack-tip clements that
accurately modd the temperature. flux and displacement. traction tlelds ncar the crack-tip.
as used in the present paper. is not currently available in the literature.

~. IlFM FORMULATION FOR TIlFRl\10Fl.ASTICITY

7'ill/( --<It '('Clll/cn I t Itall/nc!as I ici '.1'

The dilferential eq ua tions that govern the quasistatic hehavior of a thermoelastic solid,
in the ahsence of internal sources. can he written as

c,O"Cr,l) (I a. h)

where II, is the displacement vector. II is the temperature lield. ;.. II arc Lall1~'s isothermal
e1;lstie constants. 1. is the coellkient of thermal expansion. c,. is the thermal dilfusivity and
I is time. 1"\11' the two-dimensional problem considered in this h:xt. the indices take the
values I. 2. Using the fundamental temperature, displacement solutions due to a unit pulse
heal source and a unit poinl force in an infinite medium and their derivatives. a set of
houndary integral equations can he derived (Dargush and Banerjee. 1989):

c( ~ )II(~. I) = 1[,£j(x. ~; t. r),.. q(X,I) -j(x. ~; I. r)'" lI(x. 1)1 dS(x).

C,,(~ )II,(~. I) = 1[G,,(X, ~)I,(X.I) - F,;C\, ~)lIJ(X,I) +g,(x. ~: t, r)'" I/(X.I)

(2a)

- J;(x. ~: I. r)'" lI(x. 1)1 dS(x). (2h)

where I, is the traction vector.q is the flux. t is the time at which the responses are calculated.
r is the time at which the pulse source is applied and C,. c arc functions of the local geometry
at ~. The fundamental solutions are:

G,,(.\. ~) and Fi/(x. ~) are the displacement and traction solutions due to a unit point
I'orce.
.lJ,(x. s: I. r) and .fl\". ~; t. r) are the displacement and traction solutions due to a unit
pulse heat source. and
.l/(x. s;I. r) and ](x. ~ : t. r) are the temperature and Ilux solutions due to a unit pulse
heat source.

The I'undamental solutions. taken from Dargush and Banerjee (19R9). are explicitly given
in the Appendix. Note th:lt in the above equations. * denotes a Riemann convolution
integral. defIned hy
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a* b = fa(t, r)b(r) dr.
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(3)

The solution of thermoelastic problems can be obtained by solving the integral equa
tions (2a, b). Since both the space and time variables are involved in the equations, dis
cretization must be introduced in both space and time. Spatially, the variables within each
discretized element are assumed to vary quadratically in terms of the values at the nodes
of the element and these variables are assumed to be constant during each equally divided
time step. Assuming that the time duration is divided into N equal increments of magnitude
M, the convolution integrals are converted into a series of N terms. That is. the integral
equations become

c( e)O(~. t) = £i [c5g(x. e;t)q(x, t) - c5](x, e; t)O(x, t)] dS(x),
~= I S

C/(~)I1/(~.t) = r[G;;(x.e)qx.t)-F;Jt".e)IIJt",t)]dS(x)
J~

(4a)

+JI i [c5g;(x, e; t)q(x, t) - c5f,(x, e; t)O(x, t)] ds(x), (4b)

where

i
~'"

c5g(x. ~ ; t) = .q(x, ~; t, r) dr, etc.
(n ol)M

Since the fundamental solutions arc explicitly known the temporal integration can be
performed analytically. On the other hand. the spatial integration over discretized elements
requires numerical procedures. By considering the singularity of various fundamental solu
tions these integrals are evaluated using a self-adaptive integration algorithm (Banerjee et
al., 1986).

The boundary clement solutions require the usual collocation procedure. That is, by
evaluating the integral equations at all boundary nodes. we arrive at a set of equations of
the form

N

L ([l1g.v+I-n]{~}_[l1]N+I-n]{O"}) = {O}, (Sa)
n-I

N

[l1G]{/n} -[l1F] {if} + L ([l1gN +I-~]{~} _[l1fN+ l-n]{O"}) ={O}, (5b)
n-I

where [l1G). [l1F.]. [l1g]. [l1f]. [l1g] and [l11J are matrices of integrated kemel functions, {u},
{I}, {O}. {q} are vectors of nodal quantities (i.e. displacement, traction, temperature, flux)
and the superscript refers to the time step index. Equation (Sa) can be further rearranged
by separating the nodal variables for the time step N as

N-I

[l1g l ]{qN} -[l1J'] {O'''} = - L ([l1gN+I-n]{~} - [l1]N+ I-~]{O"}). (5c)
n-I

By imposing the given boundary condition. eqns (5b, c) can be written in terms of the
unknown {x}, {X} and the known {y}, {Y} nodal values and associated matrix coefficients
as

SAS 29: 18-G
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,v - I

[al]{x"} = [bl]{y'V}_ L ([.1gV +1-"]{if}-[.1!,,+I-"]{ff'}).
"- I

[A]{ XV} = [B]{ y-V} - 2: ([.1g8+ I -"J{ if} - [.1/" + I-"]{8"}).
"- I

(6a)

(6b)

Note that the matrices [A], [B] are made up of time-independent kernel coefficients and
matrices [al], W] are obtained from the kernels of the first time step and therefore, these
matrices need to be formed only once during the solution process. The decomposition of
matrices [A] and [al], obtained from the solution at the first time step, is then used for the
solution of nodal values at subsequent time steps for different right-hand sides. The right
hand side is made up of known boundary conditions and the accumulated effect of tem
perature and flux history up to the current time step. which are known at a given time step.

Steady-state thermoelasticity
The thermoelastic boundary element formulation simplifies considerably under steady

state conditions. The governing differential equations now become

kO.,,(x) = O. (A.+ 11)lIj.,,(x) + 11l1'J'(X) - (3).+ 21l)O:O.,(x) :::: O. (7a.b)

(8a)

where k is the thermal conductivity. Using the fundamental temperature and displacement
solutions due to time-independent unit load and unit step heat source a set of integral
equations can be derived (Dargush and Banerjee. 1989):

c(~)O(O = lLq(x.Oq(X)-J(x.~)O(X»)dS(X).

C.I(~ )u,( ~) = L[Gix , ~ )t,(x) - F,/'I:, ~ )lIj (x») dS(x) + L[9,(X. ~ )q(x)

- j;(x, e)O(x)] dS(x). (8b)

Since only spatial variables arc involved the solution requires only the discretization
of the boundary of the problem domain. A set of algebraic equations for each set of integral
equation can be obtained through the collocation process and the unknown nodal values
are computed by imposing the boundary condition. The final set of equations can be
expressed as

[a]{x} = [h]{y}, [AJ{ X} = [B]{ y} - ([.1gJ{ II} - [.1j1 {O}). (9a. b)

3. FRACfURE MECHANICS MODELING OF THERMAL PROBLEMS

In the presence of cracks the integral equations, described in the previous section.
cannot be applied directly. Unless the problem geometry and loading are symmetrical with
respect to the crack plane the BEM procedure requires the modeling of co-planar surfaces
of the crack. Since identical equations are obtained at corresponding nodes of the crack
surfaces, the resulting system matrix becomes ilkonditioned. A simple, but elegant, procedure
which is effective for the solution of non-symmetric crack problems is the multi-region
approach. In this approach, the body is divided into sub-regions along the crack plane and
the integral equations are applied independently for each region. The final solution is
obtained by coupling the equations of both regions through compatibility and continuity

conditions.
Thermoelastic problems, in the absence of cracks. can be solved accurately by inter

polating the field variables within each discretized element by quadratic shape functions. It
is well known that the disturbance of heat flow by crack surfaces will produce singularity
of temperature and displacement derivative fields. Therefore, the accuracy of the solution
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depends considerably on how well the temperature. displacement and flux. traction
fields are approximated in the vicinity of the crack tip. The usually quadratic boundary
elements provide neither the correct JP variation of the crack-tip displacement and tem
perature fields nor the required singularity of the traction and flux fields. The correct
variation ofdisplacement and temperature fields can be obtained through the use ofquarter
point elements (Barsoum. 1976). That is. by placing the mid-nodes of sides emanating from
the crack at geometric quarter points. the variation of displacement and temperature fields
is forced to an asymptotic JP behavior as

(10)

where A, are functions of nodal values and / is the element length. Unlike the finite element
method. the derivatives ofdisplacements and temperatures are independently approximated
in the BEM and therefore the use of the quarter point elements will provide the incorrect
variation of traction and flux. The correct singularity of traction and flux fields can be
secured by multiplying the nominal traction and flux fields. obtained from the quarter point
modeling, by a non-dimensional parameter J(iiP) such that

(11 )

where Hi arc functions of nodal values and ii is the vector of nominal traction (flux) obtained
from quarter point element modeling.

El'lllullIion o(strt'ss intensity factors
Thermal stresses can be determined from the theory of elasticity equations with body

forces obtained from solving the pure temperature problem. Therefore. the distribution of
stresses (and strains) ncar the crack tip in a thermoelastic problem is given by the general
equations that arc applicable in linear clastic fracture mechanics. That is. the ncar crack tip
stress field (1,). due to remote loading. may be expressed in terms of the distance from the
crack tip p (Fig. I):

( 12)

This crack-tip stress field may also be expressed in terms of a singularity strength
parameter known as a stress intensity factor. These stress intensity factors are defined as
(Kanninen and Popelar. 1985):

( 13)

where Kr and KII are the mode ( and mode II stress intensity factors. respectively. Using
the definition of stress intensity factors and eqn (II). the stress intensity factors may be
calculated from nominal tractions at the crack tip as

(14)

where i? is the nominal traction at the crack tip. It should be noted that although the
tractions tiD, at the crack tip are unbounded, the nominal tractions are finite.
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Fig. I. Iklinitioll of crack gwmctry.

Alternatively, the stress inlensity factors may be expressed in terms of crack opening
displacements ~u, = u,III •• -u,llI_ • (Kanninen and Popclar, 1995):

{
~I } = 1/ J27t {~1I2},

1\11 g P ~1I1
(15)

where, in terms of Young's modulus E and Poisson's ratio v, H = E for the plane stress
case and H = Ei( I - v2

) for the plane strain case.
From past experience, it was found that the crack-tip nominal traction depends very

much on the accumcy of the numerical integration scheme employed for the evaluation
of higher order singular integmls (Raveendra and Banerjee, 1991). Since the crack-tip
displacements are less sensitive to the integration scheme used, the stress intensity factors
in the present analysis arc computed from the crack-opening displacements.

~. NUMERICAL EX ..\MPLES

Effect ofcrack-tip eh",u:nts
To assess the accuracy of the solution procedure described in this text, the mode I

stress intensity f,lctors for an edge crack, shown in Fig. 2, were computed under steady
state thermal conditions. The applied temperature field was

T = ToC -I +2x/h).

The normalized stress intensity factor for this situation is obtained analytically by
Hellen et al. (1982) using Green's integral:
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Fig. 2. Geometry of an edge crack in a rectangular plane.

where Ko = Ecx.ToJb for plane stress and Ko = Ecx.ToJh/( I - v) for plane strain. The stress
intensity factor was calculated using regular quadratic clements in one case and quarter
point elements with traction singular modification at crack tips in another case. The crack
geometry used was alh = 0.1 and hJh = 2. The stress intensity factors obtained from regular
quadratic boundary elements deviated from the analytical solution by about 7%. but the
analytical and boundary clement resulls were within I% when quarter point elements with
traction singular modification were used at the crack tip. This confirms the need to use
special elements at the crack tip and. therefore. these clements were used in all the subsequent
analyses.

It should be noted that one half of the crack was modeled by three elements in both
cases. It is possible to improve the accuracy of the results of the first case by using finer
discretization. which increases the computing effort. However. highly accurate results can
be obtained through the use ofspecial crack-tip elements even with a relatively coarse mesh.

Steady-slate thermal analysis ofa center crack
The steady-state stress intensity factors of a center crack in a finite rectangular plate,

shown in Fig. 3, were computed using BEM under plane strain conditions. This problem
was solved previously using the complex variable method together with the modified
collocation technique by Sumi and Katayama (1980) and also by Emmel and Stamm (1985)
using the quarter point finite clement method. The thermal boundary conditions used were

T = T. (constant). Ixl ~ a. y = 0±; T = Tz (constant), Ixl = b.IYI < h;

T = Tz (constant). IYI = h.lxl < b.

for case A. and for case B.

aT
-- =0CJy •

aT
1~I~ay-O+' ---0.. -..;;;:: , - - '" 0:( - , Ixl = h, IYI < h;

T = ± Tz(constant). Ixl < b.y = ±h.

The mode I stress intensity factors computed from case A were normalized with respect
to Ko = cxE(Tz- T,)JbI( I - v). and the mode II stress intensity factors computed from
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Fig. 3. Geometry of a center crack in a rectangular plate.

case B were normalized with respect to KII = iXET2J h/( I - v). The results. shown in Fig. 4.
indicate excellent agreement between the present BEM solutions and results given in the
cited references.

Steady-stalc' tlll.'r11l(/1 analysis ofatl e{~qe crack
The next steady-state example considered is the problem of an edge crack in a finite

rectangular plate. shown in Fig. 2. solved previously using various finite clement techniques
by Hellen et al. (1982). The thermal boundary condition used were

DT
T = To( -I +2xjb);- = 0Dy , lyl = Ii,

(fTo<x < h: ... =0,
Dy y =0. x ~ a.

The non-dimensional form of the stress intensity factors were obtained by dividing the

Center Crack (tvb-1)
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Fig. 4. Comparison of Mode! and II steady-state SIFs for a center crack.
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Edge Crack (hIb-2)
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Fig. 5. Comparison of Mode I steady-state SIFS for an edge crack.

plane stress solutions by KII = Ea.TII }", The finite clement results were computed using the
virtual crack extension (VeE) technique. J integral technique and from a semi-analytical
solution based on Green's integral which was scaled by a factor that depends on the
geometry alh of the plate. The finite clement results are compared to BEM solutions in Fig.
5. Again the figure shows good agreement between the solutions.

Steac~v-state thermal analysis ofradial crack
The final steady-statc cxample considered is the problem of a radial crack in a hollow

cylinder. Thc geometry of the cylinder is shown in Fig. 6. The crack geometry used was
1I = 4.0. alh = 0.2 and RJRu = 0.8. The steady-state stress intensity factors were computed
under three scts of thermal boundary conditions. The boundary conditions used were:

Fig. 6. Geometry ofa radial crack in a hollow cylinder.
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Case A: A thermal loading of - -r was applied to the inner surface of the cylinder
and to the crack surface and the outer surface of the cylinder was maintained at 0°.
Case B: The inner surface of the cylinder was cooled to a temperature of - r while
the outer surface was maintained at 0'. The crack surfaces were assumed to be insulated.
Case C: The outer surface of the cylinder was heated to a temperature of r while the
inner surface of the cylinder and the crack surfaces were kept at 0".

Figure 7 shows that the normalized stress intensity factors were essentially identical
for all three cases and the SIFs increase monotonically with the non-dimensional crack
length parameter. The stress intensity factors were normalized by dividing the boundary
element solutions by K(} = E:x/i T,.lb,(I - v). where 6. T is the difference in temperatures
between the inner and outer surfaces.

Time-dependent thermal analysis ofcenter cracks
A limited number of fracture mechanics analysis problems with transient temperature

distribution is available in the literature. One such example is the evaluation of the transient
stress intensity factor of a center crack in a rectangular plate using the finite clement
method (Emmel and Stamm. 1985). The thermal loading considered in the present analysis
corresponds to T = T~ on the boundary and T = 0 on the crack surface. The finite clement
mode I SIF results. for a crack geometry of alh = 0.5. hlb = I (see Fig. 3). are given in
Emmel and Stamm (1985). A comparison of FEM results with the corresponding solutions
of BEM is shown in Fig. 8. The results show that the two numerical solutions are in good
agreement. Further, REM solutions for crack geometry alh = 0.1 and alb = 0.3 are also
shown in the figure. All the results indicate that the normalized stress intensity factors
increase monotonically to their steady-state values. It should oe noted that the time axis is
non-dimensionalized as c,.tlh:, where c,. is the thermal dilrusivity, t is time and Ii is the plate
width. The value used for dilrusivity in the finite clement solutions is not given in the
reference, therefore, a value for (',. was assumed such that the time values were shifted to
the corresponding OEM values. Note that the values of SI Fs shown for the final time step
in this plot and all the subsequent plots arc obtained from the steady-state analysis.

Radial Crack in Hollow Cyllnder
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Fig. 7. Steady-state SI Fs for a radial crack.
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Center Crack (hIb=o1)
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Fig. S. Comparison of transient SI Fs for a cenler crack.

Timc-dcpcndcnt thermal analysis oj" C(~(le crllcks
The transient stress intensity factors for an edge crack (Fig. 2) were calculated by

(Idlen e( Ill. (19t{2) using the finite clement method. Only one geometry (a/" = 0.3) was
considered in the tinite clement study. The plate was constmined along the vertic:!1 direction
at the top and boltom faces and the left side of the phtte was cooled to - 21"', while the
opposite side was kept at 0'. The FEM results are given for a cmck geometry of a/b =0.3.
The BEM solutions, shown in Fig. 9, agree well with the finite clement results. In this
ease also, the stress intensity factor and time values were non-dimensionalized as in the
previous example. Additionally, boundary clement results were obtained for crack geome
tries of alb = 0.1 and alh = 0.5. These results also increase rapidly to their steady-state
values.

Time-dep('lulefllthamal analysis ofa radial crack in a/wI/ow cylindt'r
This example, for a specific geometry of alh = 0.2, was also examined by Hellen et al.

(1982) and Emmd and Stamm (1985) using the finite clement method. Three thermal
loading cases, described previously in the stl:auy-state example, were also considered in the
present problem. Figure 10 shows a comparison of boundary clement solutions to finite
clement results for the thermal loading given by case A. The stress intensity f'lctors were
normalized as in the steady-state example and the time values were non-dimensionalized as
c,(lh~. The figure shows that the FEM results and BEM solutions are in good agreement.
The BEM solutions arc also compared to the FEM results for cases Band C in Figs II and
12, respectively. Again the FEM and BEM results arc in good agreement.

nine-dependent thermal analysis ofan inclined crack in a rectangular plate
Finally, a mix.ed mode crack problem under transient thermal loading was considered.

A crack inclined at an angle of 22.5' to the horizontal, embedded in a rectangular plate.
was selected. The crack geometry used was alh = 0.2, !llh = I, as shown in Fig. 13. A
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Fig. 10. Comparison of transient SIPs for a radial crack (case A).
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Fig. 13. Geometry of an inclined crack in a rectangular plate.

thermal loading of 0' at the crack surface and Tn at the outer boundary. applied at time
t = 0 and maintained at those values. was considered. The variation of mode I and mode
II stress intensity factors with time is shown in Figs 14 and 15, respectivdy. The stress
intensity factors and times were non-dimensionalized as in the centcr crack exampic. Figure
14 indicatcs that thc modc I strcss intcnsity factor increascs monotonically to thc steady
state value. however. the mode" strcss intensity factor increases to a pcak aftcr a short
timc beforc it dccreascs gradually to the steady-state valuc. as shown in Fig. 15.

Some aspects ofmodclillg
The magnitudc of the time step used in solving the cxamples in the present work is not

indicated since the results arc not vcry sensitive to the timc step size. Dargush and Banerjee
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Fig. 14. Transient mode I StFs for an inclined crack.
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(1989). in their transient thermoelastic analysis. have estimated the optimum time step from
thermal diffusivity c:•• and the size of the smallest clement L. as 01 = O.05L 2/C•• [n the
present work, instead of the element size, the half-length of the crack was used in estimating
the time step. However, the results arc insensitive even to the usc of time steps that arc
several time bigger than the estimated values. This is consistent with a recent observation
of Dargush and Banerjee (1991) in the analysis of transient heat conduction. Generally. the
size of time step only seems to affect the very early responses.

In general. half the crack length was modeled by three boundary elements. The same
discretization was used on both sides of the crack tip. Quarter point crack-tip elements with
traction singular modification were used at the crack tip. The element sizes, thereafter. were
increascd gradually. This discretization pattern was developed during the course of previous
fracture mechanics analyses [e.g. Raveendra and Banerjee (1991)J.

5. CONCLUSION

A knowledge of stress intensity factors is important in the evaluation of the structural
integrity of tlawed structures. A boundary-only integral equation is applied for the first
time for the evaluation of stress intensity factors of planar structures subjected to steady
state and transient thermal loading. Since the accuracy of the solution depends considerably
on the correct representation of ncar-tip fields, special crack-tip elements are used at the
crack-tip. These elements provide the correct variation of displacement, temperature fields
and singularity of traction, flux fields. Center cracks. edge cracks and an inclined crack in
a plate and a radial crack in a cylinder are solved using this boundary element procedure.
Most of the BEM solutions are compared to previous results obtained from finite element
and analytical methods to validate the applicability of the BEM procedure. The efficient
and accurate boundary element method used in the present analysis provides an elegant
alternative to other numerical methods for the solution ofsteady-state and transient thermal
fracture mechanics problems.
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APPENDIX

Timl'.dl'pl,trI/l'1It thl'rm"t'iusticitr
The lempcratun: and displacemcnt fundamental solutions due to a unit pulse heat source arc

The displacement fundamental solution duc to a unit point lo"d is

G,,(X.O = C,[:,=,-S"C, In rIo

where

c l =I/21lk. c,=/lc,/2().+2/1). c,~IS:'(/.(I-v). (',=3-41'. :,=y)r. r'=y,y,.

(Al.2)

(A3)

i' c--t:
£1(/1) = --dx.

x

The flux and traction fundamental solutions arc obtained from the appropriate derivatives of temperaturc
and displacement solutions as

(M.5)

(A6)

where
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Steadv-state thermoelasticin'
The fundamental solu'tions G'i and F,j are the same as those given by eqns (A3 and 6). The steady-state

solutions g. J. g, and f, are obtained from the time-dependent solutions as t approaches infinity. That is. the
steady-state fundamental solutions are

c. c,
g,(x. ~I = ill',( I -Z In r)j and f,(x.~) = T[Z;,;.n. -n,(I-1 In rl).

(A7.8)

(A9.101


